The Jacana

 Great Lives Site


Back to Jacana

Great Lives index


Werner Karl Heisenberg
1901 - 1976

German physicist Werner Karl Heisenberg was a pioneer in the formalization of atomic theory. He won the 1932 Nobel Prize in physics for his discovery of the uncertainty principle, which states that it is impossible to specify the precise position and momentum of a particle at the same time. Heisenberg also developed the theory of matrix mechanics. During World War II he was director of the German atomic bomb project, which led to his brief imprisonment following the war and some controversy during the remainder of his career.


Werner Karl Heisenberg was born on December 5, 1901, in Würzburg, Germany, the son of August and Annie Wecklein Heisenberg. He received his education at the Maximilian Gymnasium in Munich and at the University of Munich, where his father was professor of Greek language and literature. Shortly before he began his university studies, he worked on a farm for several months and took active part in youth movements, searching for a way out of the social collapse that hit Germany at the end of World War I.

Heisenberg was also a talented pianist, an avid hiker, and an eager student of classical literature and philosophy. At the university, where he enrolled in 1920, Heisenberg soon established close contact with Arthur Sommerfeld, a chief figure in early modern physics, and with Sommerfeld's most outstanding student, Wolfgang Pauli, later a Nobel laureate. Heisenberg spent the winter of 1922-1923 at the University of Gettingen, where the physics department was rapidly establishing itself, with the help of Max Born, James Franck, and David Hilbert, as a center of theoretical physics. After taking his doctorate in Munich in 1923, Heisenberg went on a Rockefeller grant to Niels Bohr's institute in Copenhagen, where he eagerly studied the most creative and up-to-date speculations on atomic theory.

His Landmark Papers

The fusion of the influence of these mentors with the receptiveness of a most talented mind worked unusually well. No sooner had Heisenberg completed his stay in Copenhagen than he worked out, while recuperating on the shores of Helgoland from a heavy attack of hay fever, a comprehensive method of calculating the energy levels of "atomic oscillators." The method yielded very good results but appeared so strange that Heisenberg was undecided whether to submit his report for publication or "to throw it into the flames." Happily for science, he sent a copy of it to Pauli and, after receiving a favorable reply, he showed it to Born on his return to Gettingen in June 1925. Born realized its importance and had it sent to the Physikalische Zeitschrift, where it was immediately printed under the title, "On Quantum Mechanical Interpretation of Kinematic and Mechanical Relations." The person most preoccupied with the "strange" mathematical formalism in Heisenberg's paper was Born himself, who after eight days of constant reflection discovered that it corresponded to the rules of matrix calculus.

Heisenberg's paper earned its author immediate fame and recognition. At Bohr's recommendation, in 1926 he was appointed lecturer in theoretical physics at the University of Copenhagen. It was there that Heisenberg gave much thought to the apparent discrepancy between two formulations of quantum theory, one based on matrix calculus, the other on wave equations elaborated by Erwin Schroedinger. In the course of his work on this question, Heisenberg realized that only those physical situations are "meaningful" in quantum mechanics in which the differences of the noncommutative products of conjugate variables occur. He immediately saw that, because of these differences, one cannot determine simultaneously the position and velocity of an atomic particle or the energy level and its timing of an atomic oscillator.

The recognition of this fact led Heisenberg to the formulation of the famous uncertainty principle, which appeared in 1927 on the pages of the Physikalische Zeitschrift in an article entitled, "On the Visualizable Content of Quantum Theoretical Kinematics and Mechanics." Heisenberg's The Physical Principles of the Quantum Theory (1930) also is considered a classic in this field. Heisenberg's rise was now as rapid in the academic as in the scientific world. In 1927, at the age of 26, he became professor of theoretical physics at the University of Leipzig. He was the recipient, along with Schroedinger and Paul Dirac, of the Nobel Prize for physics for 1932. In 1941 he took the chair of theoretical physics at the University of Berlin and the directorship of the Kaiser Wilhelm Institute for Physics. During this flurry of academic activity, in 1937 he married Elisabeth Schumacher, and they had seven children.

Questionable Role in War

As a theoretical scientist, Heisenberg was initially held in low regard and even considered suspect by the Nazi government. However, when World War II began, the government appointed him as director of the German uranium project, and he worked on developing an atomic bomb for Germany throughout the war. Heisenberg was arrested and placed in Allied captivity in England from April 1945 until the summer of 1946. His role during the war continues to be a source of controversy.

Later Career

After World War II Heisenberg did much to reorganize scientific research as head of the Max Planck Institute of Physics and of the Alexander von Humboldt Foundation. In the early 1950s Heisenberg turned with great vigor toward the formulation of a "unified theory of fundamental particles," stressing the role of symmetry principles. This theory was intensively discussed at an international conference in 1958, the year he moved to the University of Munich as professor of physics. He presented his thought on this subject in Introduction to the Unified Field Theory of Elementary Particles (1966).

In 1955-1956 Heisenberg gave the Gifford Lectures at the University of St. Andrews, Scotland, which were printed under the title Physics and Philosophy: The Revolution in Modern Science. He also published the autobiographical Physics and Beyond (1971) and several books dealing with the philosophical and cultural implications of atomic and nuclear physics, all of which are available in English translation.

Heisenberg retired in 1970, although he continued to write on a variety of topics. His health began to fail in 1973, and shortly thereafter he became seriously ill. He died on February 1, 1976 in Munich.


Werner Heisenberg's high school years were interrupted by World War I, when he had to leave school to help harvest crops in Bavaria. Back in Munich after the war, he volunteered as a messenger for democratic socialist forces that fought and ousted the communist government that had taken control of the Bavarian state. He was involved in youth groups trying to rebuild German society out of the ashes of World War I, including the "New Boy Scouts" which hoped to renew German life through direct experience of nature, Romantic poetry, music, and thought.

An unusual start for a great contributor to twentieth-century physics. In 1920 he entered the University of Munich to pursue a degree in math. But the math professor wouldn't allow him into an advanced seminar, so he quit. He transferred to physics. He immediately took an interest in theoretical physicists, and soon met many scientists whose work would dominate the coming decades, including Niels Bohr, Wolfgang Pauli, Max Born, and Enrico Fermi. One of his chief interests was working out problems involved in the Bohr-Rutherford model of the atom. He just barely received his PhD in 1923 -- nearly failing because he had neglected his laboratory work. His advisor argued on his behalf and he was granted the degree. He became a professor at the University of Gottingen at age 22. Because he suffered from severe seasonal allergies, during pollen season he left Bavaria for the island of Heligoland. While there he had time to think and work out problems with the atomic model. He realized the limitations of visual models and suggested working strictly with experimental data and mathematical results. To do this he applied a mathematical system to atomic physics, called matrix mechanics. It was a turning point for physics. Many in the field disliked it because it didn't provide a physical model to relate to. Erwin Schrödinger came up with the theory of wave mechanics about a year later. Those uncomfortable with Heisenberg's system jumped on the wave mechanics side. The conflict between the theories was resolved when Schrödinger proved that they were, in fact, identical.

In 1926 Heisenberg joined Bohr at the Institute for Theoretical Physics in Copenhagen. This turned out to be one of the most productive periods in Heisenberg's life. In 1927 he was puzzling over the basic quantum properties of electrons. He realized that the act of measuring an electron's properties by hitting it with gamma rays would alter the electron's behavior. Indeed, you could measure the position of an electron (or other particle) OR you could measure its momentum. But the more precisely you measure one property, the more you throw the other off. He tied this up in an equation using Planck's constant, and called it the uncertainty principle. While many resisted this idea, it eventually became accepted as a fundamental law of nature.

Later in 1927 Heisenberg returned to Germany and became the youngest full professor in the country. Professorship entailed a full plate of teaching and administrative duties, and his scientific output naturally dwindled. With the political turmoil in Germany and World War II, Heisenberg's life became complicated. There was a mass exodus of German scientists in the 1930s, but Heisenberg was one of the few top-notch scientists who decided to remain. Along with Max Planck, he expressed hope of being able to preserve Germany's scientific traditions and institutions. At first he and others tried to resist Hitler's efforts to "purify" science and academics, but soon the Nazis controlled the universities. His own position was shaky since the Nazis viewed theoretical physics as "Jewish" and suspect. Efforts to promote him met with violent opposition from political leaders and even some colleagues. There were times his personal safety was uncertain.

But as the war began the government recognized, suspect or not, the importance of Heisenberg's knowledge. He was made director of the German atom bomb project. He spent five years working on it.

At war's end, Heisenberg was captured by the Allies and was imprisoned in England for six months. He was released and returned to Germany where he reestablished the Kaiser Wilhelm Institute for Physics, but renamed it the Max Planck Institute, in honor of his friend and colleague. He held many administrative posts in West Germany and represented his country at international meetings. He retired in 1970, and died in 1976 survived by his wife of 39 years and seven children.


Werner Heisenberg's father was August Heisenberg and his mother was Anna Wecklein. At the time that Werner was born his father was about to progress from being a school teacher of classical languages to being appointed as a Privatdozent at the University of Würzburg. Anna's father, Nikolaus Wecklein, was the headmaster of the Maximilians Gymnasium in Munich and it was while August Heisenberg was a trainee teacher at that school that he had met Anna. August and Anna were married in May 1899. Werner had an older brother Erwin, born in March 1900, who was therefore nearly two years older than the subject of this biography.

He was an Evangelical Lutheran and his wife Anna had converted from being a Roman Catholic to make sure there were no religious problems with their marriage. August and Anna, however, were only religious for the sake of convention. A Christian belief was expected of people of their status so for them it was a social necessity. In private, however, they expressed their lack of religious beliefs, and in particular they brought up their children to follow Christian ethics but showed total disbelief in the historical side of Christianity.

In September 1906, shortly before his fifth birthday, Werner enrolled in a primary school in Würzburg. He spent three years at that school but then in 1909 his father was appointed Professor of Middle and Modern Greek at the University of Munich. In June 1910, a few months after his father took up the professorship, Werner and the rest of the family moved to Munich. There he attended the Elisabethenschule from September, spending only one year at this school before entering the Maximilians Gymnasium in Munich. This of course was the school where his grandfather was the headmaster.

In 1914 World War I began and the Gymnasium was occupied by troops. Lessons were arranged in different buildings and as a result of the disruption Heisenberg undertook much independent study which probably had a beneficial effect on his education. His best subjects were mathematics, physics and religion but his record throughout his school career was excellent all round. In fact his mathematical abilities were such that in 1917 he tutored a family friend who was at university in calculus. During this period he belonged to a paramilitary organisation which operated in the Gymnasium with the intention of preparing the young men for later military service.

Heisenberg also worked on farms as his contribution to another voluntary organisation which sent the boys to help in the fields in spring and summer. This work took him away from home for the first time in 1918 when he was sent to work on a dairy farm in Upper Bavaria. It was a time of great hardship with long hours of labour made worse since there was insufficient food. He spent his spare time playing chess, which he did to a very high standard, and also read mathematics texts he had taken with him. In fact by this time he had become interested in number theory and he read Kronecker's work and tried to find a proof of Fermat's Last Theorem.

After the war ended in 1918 the situation in Germany became unstable with different factions trying to take power by force. Heisenberg took part in the military suppression of the Bavarian Soviet forces but, although it was a very serious business, the young men probably treated it almost as a game. He later wrote:-

"I was a boy of 17 and I considered it a kind of adventure. It was like playing cops and robbers."

In the Gymnasium Heisenberg led a youth movement and he later led a movement within the Young Bavarian League. In 1920 he took his Abitur examination and was one of two pupils entered from the Maximilians Gymnasium for a Bavarian wide competition for a scholarship from the Maximilianeum Foundation. Eleven scholarships were available and Heisenberg just made it by coming in eleventh place. His examination results in mathematics and physics were classed as extraordinary, but his essay on "tragedy as poetic art" was much less impressive. He declined the offer of free accommodation from the Foundation, preferring to live with his parents.

In the period between taking his Abitur examination and entering the University of Munich, Heisenberg went off hiking with his youth group. He nearly died of typhoid which he contracted after spending the night in a castle which had been used as a military hospital. He recovered, despite the problems of obtaining suitable food, in time to begin his university studies. During the summer of 1920 Heisenberg was, as he had been for some time, intending to study pure mathematics at university. He had read Weyl and also Bachmann's text which gave a complete survey of number theory and this was to be his intended research topic for his doctorate. He approached Ferdinand von Lindemann to see if he would be his research supervisor.

Had the interview with Lindemann been a success then Heisenberg might today be known as an outstanding number theorist. However, the interview did not go well, almost certainly since Lindemann was only two years off retiring and had only agreed to see Heisenberg as a favour to his father who was a friend and colleague. Following this Heisenberg had an interview with Sommerfeld who happily accepted him as a student.

With his fellow student Pauli, Heisenberg began to study theoretical physics under Sommerfeld in October 1920. At first he was cautious, taking mostly mathematics classes and making sure that he could revert to mathematics if the theoretical physics went badly. He avoided courses by Lindemann, however, so his mathematical interests moved from number theory to geometry. Soon his confidence in theoretical physics was such that by the second semester he was taking all of Sommerfeld's courses. He also took courses in experimental physics, which were compulsory, and he began to plan to undertake research in relativity. However Pauli, who was at that time working on his major survey of the theory of relativity, advised him against doing research in that topic. On atomic structure, however, Pauli explained, much needed to be done since theory and experiment did not agree.

Heisenberg wrote of his early days at university:-

"My first two years at Munich University were spent in two quite different worlds: among my friends of the youth movement and in the abstract realm of theoretical physics. Both worlds were so filled with intense activity that I was often in a state of great agitation, the more so as I found it rather difficult to shuttle between the two."

In June 1922 he attended lectures by Niels Bohr in Göttingen. Returning to Munich, Sommerfeld gave him a problem in hydrodynamics to keep him busy while he (Sommerfeld) spent session 1922-23 in the United States. Heisenberg presented preliminary results on the problem on turbulence at a conference in Innsbruck before going again to Göttingen to study with Born, Franck, and Hilbert while his supervisor was away. There he worked with Born on atomic theory, writing a joint paper with him on helium. His doctoral dissertation, presented to Munich in 1923, was on turbulence in fluid streams.

After taking his doctorate Heisenberg went on a trip to Finland then, in October 1923, he returned to Göttingen as Born's assistant. In March 1924 he visited Niels Bohr at the Institute for Theoretical Physics in Copenhagen where he met Einstein for the first time. Returning again to Göttingen he delivered his habilitation lecture on 28 July 1924 and qualified to teach in German universities.

Heisenberg later wrote:-

"I learned optimism from Sommerfeld, mathematics at Göttingen, and physics from Bohr. "

From September 1924 until May 1925 he worked, with the support of a Rockefeller grant, with Niels Bohr at the University of Copenhagen, returning for the summer of 1925 to Göttingen. Heisenberg invented matrix mechanics, the first version of quantum mechanics, in 1925. He did not invent these concepts as a matrix algebra, however, rather he focused attention on a set of quantised probability amplitudes. These amplitudes formed a non-commutative algebra. It was Max Born and Pascual Jordan in Göttingen who recognised this non-commutative algebra to be a matrix algebra.

Matrix mechanics was further developed in a three author paper by Heisenberg, Born and Jordan published in 1926. In May 1926 Heisenberg was appointed Lecturer in Theoretical Physics in Copenhagen where he worked with Niels Bohr. In 1927 Heisenberg was appointed to a chair at the University of Leipzig and he delivered his inaugural lecture on 1 February 1928. He was to hold this post until, in 1941, he was made director of the Kaiser Wilhelm Institute for Physics in Berlin.

In 1932 he was awarded the Nobel Prize in physics for:-

The creation of quantum mechanics, the application of which has led, among other things, to the discovery of the allotropic forms of hydrogen.

In the presentation speech H Pleijel said:-

"Heisenberg viewed his problem, from the very beginning, from so broad an angle that it took care of systems of electrons, atoms, and molecules. According to Heisenberg one must start from such physical quantities as permit of direct observation, and the task consists of finding the laws which link these quantities together. The quantities first of all to be considered are the frequencies and intensities of the lines in the spectra of atoms and molecules. Heisenberg now considered the combination of all the oscillations of such a spectrum as one system, for the mathematical handling of which, he set out certain symbolical rules of calculation. It had formerly been determined already that certain kinds of motions within the atom must be viewed as independent from one another to a certain degree, in the same way that a specific difference is made in classical mechanics between parallel motion and rotational motion. It should be mentioned in this connection that in order to explain the properties of a spectrum it had been necessary to assume self-rotation of the positive nuclei and the electrons. These different kinds of motion for atoms and molecules produce different systems in Heisenberg's quantum mechanics. As the fundamental factor of Heisenberg's theory can be put forward the rule set out by him with reference to the relationship between the position coordinate and the velocity of an electron, by which rule Planck's constant is introduced into the quantum-mechanics calculations as a determining factor."

Heisenberg's quantum mechanics has been applied by himself and others to the study of the properties of the spectra of atoms and molecules, and has yielded results which agree with experimental research. It can be said that Heisenberg's quantum mechanics has made possible a systemization of spectra of atoms. It should also be mentioned that Heisenberg, when he applied his theory to molecules consisting of two similar atoms, found among other things that the hydrogen molecule must exist in two different forms which should appear in some given ratio to each other. This prediction of Heisenberg's was later also experimentally confirmed.

Heisenberg is perhaps best known for the Uncertainty Principle, discovered in 1927, which states that determining the position and momentum of a particle necessarily contains errors the product of which cannot be less than the quantum constant h. These errors are negligible in general but become critical when studying the very small such as the atom. It was in 1927 that Heisenberg attended the Solvay Conference in Brussels. He wrote in 1969:-

"To those of us who participated in the development of atomic theory, the five years following the Solvay Conference in Brussels in 1927 looked so wonderful that we often spoke of them as the golden age of atomic physics. The great obstacles that had occupied all our efforts in the preceding years had been cleared out of the way, the gate to an entirely new field, the quantum mechanics of the atomic shells stood wide open, and fresh fruits seemed ready for the picking."

Heisenberg published The Physical Principles of Quantum Theory in 1928. In 1929 he went on a lecture tour to the United States, Japan, and India. In the 1930s Heisenberg and Pauli used a quantised realisation of space in their lattice calculations. Heisenberg hoped this mathematical property would lead to a fundamental property of nature with a 'fundamental length' as one of the constants of nature.

In 1932 Heisenberg wrote a three part paper which describes the modern picture of the nucleus of an atom. He treated the structure of the various nuclear components discussing their binding energies and their stability. These papers opened the way for others to apply quantum theory to the atomic nucleus.

In 1935 the Nazis brought in a law whereby professors over 65 had to retire. Sommerfeld was 66 and he had already indicated that he wanted Heisenberg to succeed him. It was an appointment which Heisenberg badly wanted and in 1935 Sommerfeld again indicated that he wanted Heisenberg to fill his chair. However this was the period when the Nazis wanted "German mathematics" to replace "Jewish mathematics" and "German physics" to replace "Jewish physics". Relativity and quantum theory were classed as "Jewish" and as a consequence Heisenberg's appointment to Munich was blocked. Although he was in no way Jewish, Heisenberg was subjected to frequent attacks in the press describing him to be of "Jewish style".

In 1937 Heisenberg married Elisabeth Schumacher. He met her through his music which was important to him throughout his life. An excellent pianist, Heisenberg met Elisabeth Schumacher at a concert in which he was performing at the house of a friend. Elizabeth was only 22 when they met, Heisenberg was 35. They were married on 29 April 1937, less than three months after they first met. Heisenberg had been asked to take up the appointment at Munich in March but had asked for the date to be delayed until August because of his wedding. It was agreed that he should take up the appointment on 1 August. He and his wife arrived in Munich in July but his appointment was blocked by the Nazis.

During the Second World War Heisenberg headed the unsuccessful German nuclear weapons project Uranverein. He worked with Otto Hahn, one of the discoverers of nuclear fission, on the development of a nuclear reactor but failed to develop an effective program for nuclear weapons. Whether this was because of lack of resources or a lack of a desire to put nuclear weapons in the hands of the Nazis, it is unclear.

After the war he was arrested by Alsos, a secret mission that followed the advancing Allied forces in Europe to determine the progress of Germany's atomic bomb project. He was interned at Farm Hall in Godmanchester, Huntingdonshire, England, with other leading German scientists. However he returned to Germany in 1946 when he was appointed director of the Max Planck Institute for Physics and Astrophysics at Göttingen. In the winter of 1955-1956 he gave the Gifford Lectures "On physics and philosophy" at the University of St Andrews. When the Max Planck Institute moved to Munich in 1958 Heisenberg continued as its director. He held this post until he resigned in 1970.

He was also interested in the philosophy of physics and wrote Physics and Philosophy (1962) and Physics and Beyond (1971).

Heisenberg received many honours for his remarkable contributions in addition to the Nobel Prize for Physics. He was elected a Fellow of the Royal Society of London, and was a member of the academies of Göttingen, Bavaria, Saxony, Prussia, Sweden, Rumania, Norway, Spain, The Netherlands, Rome, the Akademie der Naturforscher Leopoldina, the Accademia dei Lincei, and the American Academy of Arts and Sciences. Among the prizes he received was the Copernicus prize.


Werner Heisenberg was born on 5th December, 1901, at Würzburg. He was the son of Dr. August Heisenberg and his wife Annie Wecklein. His father later became Professor of the Middle and Modern Greek languages in the University of Munich. It was probably due to his influence that Heisenberg remarked, when the Japanese physicist Yukawa discovered the particle now known as the meson and the term "mesotron" was proposed for it, that the Greek word "mesos" has no "tr" in it, with the result that the name "mesotron" was changed to "meson".

Heisenberg went to the Maximilian school at Munich until 1920, when he went to the University of Munich to study physics under Sommerfeld, Wien, Pringsheim, and Rosenthal. During the winter of 1922-1923 he went to Göttingen to study physics under Max Born, Franck, and Hilbert. In 1923 he took his Ph.D. at the University of Munich and then became Assistant to Max Born at the University of Göttingen, and in 1924 he gained the venia legendi at that University.

From 1924 until 1925 he worked, with a Rockefeller Grant, with Niels Bohr, at the University of Copenhagen, returning for the summer of 1925 to Göttingen.

In 1926 he was appointed Lecturer in Theoretical Physics at the University of Copenhagen under Niels Bohr and in 1927, when he was only 26, he was appointed Professor of Theoretical Physics at the University of Leipzig.

In 1929 he went on a lecture tour to the United States, Japan, and India.

In 1941 he was appointed Professor of Physics at the University of Berlin and Director of the Kaiser Wilhelm Institute for Physics there.

At the end of the Second World War he, and other German physicists, were taken prisoner by American troops and sent to England, but in 1946 he returned to Germany and reorganized, with his colleagues, the Institute for Physics at Göttingen. This Institute was, in 1948, renamed the Max Planck Institute for Physics.

In 1948 Heisenberg stayed for some months in Cambridge, England, to give lectures, and in 1950 and 1954 he was invited to lecture in the United States. In the winter of 1955-1956 he gave the Gifford Lectures at the University of St. Andrews, Scotland, these lectures being subsequently published as a book.

During 1955 Heisenberg was occupied with preparations for the removal of the Max Planck Institute for Physics to Munich. Still Director of this Institute, he went with it to Munich and in 1958 he was appointed Professor of Physics in the University of Munich. His Institute was then being renamed the Max Planck Institute for Physics and Astrophysics.

Heisenberg's name will always be associated with his theory of quantum mechanics, published in 1925, when he was only 23 years old. For this theory and the applications of it which resulted especially in the discovery of allotropic forms of hydrogen, Heisenberg was awarded the Nobel Prize for Physics for 1932.

His new theory was based only on what can be observed, that is to say, on the radiation emitted by the atom. We cannot, he said, always assign to an electron a position in space at a given time, nor follow it in its orbit, so that we cannot assume that the planetary orbits postulated by Niels Bohr actually exist. Mechanical quantities, such as position, velocity, etc. should be represented, not by ordinary numbers, but by abstract mathematical structures called "matrices" and he formulated his new theory in terms of matrix equations.

Later Heisenberg stated his famous principle of uncertainty, which lays it down that the determination of the position and momentum of a mobile particle necessarily contains errors the product of which cannot be less than the quantum constant h and that, although these errors are negligible on the human scale, they cannot be ignored in studies of the atom.

From 1957 onwards Heisenberg was interested in work on problems of plasma physics and thermonuclear processes, and also much work in close collaboration with the International Institute of Atomic Physics at Geneva. He was for several years Chairman of the Scientific Policy Committee of this Institute and subsequently remained a member of this Committee.

When he became, in 1953, President of the Alexander von Humboldt Foundation, he did much to further the policy of this Foundation, which was to invite scientists from other countries to Germany and to help them to work there.

Since 1953 his own theoretical work was concentrated on the unified field theory of elementary particles which seems to him to be the key to an understanding of the physics of elementary particles.

Apart from many medals and prizes, Heisenberg received an honorary doctorate of the University of Bruxelles, of the Technological University Karlsruhe, and recently (1964) of the University of Budapest; he is also recipient of the Order of Merit of Bavaria, and the Grand Cross for Federal Services with Star (Germany). He is a Fellow of the Royal Society of London and a Knight of the Order of Merit (Peace Class). He is a member of the Academies of Sciences of Göttingen, Bavaria, Saxony, Prussia, Sweden, Rumania, Norway, Spain, The Netherlands, Rome (Pontificial), the German Akademie der Naturforscher Leopoldina (Halle), the Accademia dei Lincei (Rome), and the American Academy of Sciences. During 1949-1951 he was President of the Deutsche Forschungsrat (German Research Council) and in 1953 he became President of the Alexander von Humboldt Foundation.

One of his hobbies is classical music: he is a distinguished pianist. In 1937 Heisenberg married Elisabeth Schumacher. They have seven children, and live in Munich.










This web page was last updated on: 23 December, 2008